TBF drop is KPI(Key Performances Indicator) which is related to 2G data call GPRS/EDGE in GSM Network. TBF drop indicate how often your services disconnected when you in GPRS or EDGE data Services. There are some tips how to improve TBF drop rate in GSM Huawei. You can follow below steps to improve TBF Drop Rate in GSM Huawei.
- Make sure no Hardware problem especially related TRX module. You need to fix Hardware issue first if you found hardware problem
- Make sure no Interference. You have to do re-tune or change frequency that suspected Frequency Interference to improve TBF drop rate
- Make sure No overshooting Cells. You can adjust Antenna Tilt/Down tilt for overshooting cells to improve TBF drop rate and avoid access traffic in low RX level thus can improve TBF drop call.
- Reduce Dynamic PDCH(MAXPDCHRATE) and add static PDTCH to avoid preemption channel by voice services especially for cells with high Voice traffic.
-Shifting Static PDCH from TRX non BCCH to TRX BCCH and make priority setting by set TRX layering priority which can be set by OPTL value in GTRXDEV object.With this strategy data services will be concentrated in TRX BCCH with full power(no power control) thus can improve TBF drop rate and getting better than data services in TRX non BCCH.
- Increase timer T3168 and T3192
T3168 is used to set the maximum duration for the MS to wait for the uplink assignment message. After the MS originates the uplink TBF setup request by sending the packet resource request or the channel request in the packet uplink acknowledge message, the timer T3168 is started to wait for the packet uplink assignment message on the network side. If the MS receives the packet uplink assignment message before T3168 expires, T3168 is reset. Otherwise, the MS originates the packet access request for four times. Then the MS regards this as the TBF setup failure.
T3192: Duration of releasing the TBF after the MS receives the last data block. When the MS receives the RLC data block containing the flag identifying the last data block and confirms that all the RLC data blocks in the TBF are received, the MS sends the packet downlink acknowledge message containing the last flag acknowledgement and the timer T3192 is started. If the timer T3192 expires, the MS releases the TBF related resources and starts monitoring the paging channel. During TBF releasing, if the MS is the half duplex mode and receives the packet uplink assignment, the MS responds this command. During TBF releasing, if the MS is the half duplex mode and receives no packet uplink assignment message, the MS enters the packet idle mode. If the MS is in the dual transmission mode, the MS enters the special mode.
- Increase timer N3101,Ex: from 30 to 90
Detail description of N3101:
Maximum value of the N3101 counter. In the dynamic uplink allocation mode, the network side enables multiple MSs to share the same uplink channel through the USF value in the downlink data block. After the network side allocates the USF to the uplink TBF (the uplink TBF is set up successfully), N3101 is started. The network side waits for the RLC uplink data block sent by the MS. If the RLC uplink data block sent by the MS is valid, N3101 is reset. Otherwise, the value of N3101 is increased on the network side. When this counter is overflowed, the current uplink TBF is released abnormally.
- Increase timer N3103 and N3105
Detail description of N3103 and N3105
N3103: Maximum value of the N3101 counter. When the uplink transmission ends, if the network side receives the last RLC data block, the network side sends an FAI=1 uplink packet acknowledged/unacknowledged message and starts N3103. If the packet control acknowledgement message is not received in the specified time, N3103 is increased on the network side and the uplink packet acknowledged/unacknowledged message is retransmitted. When this counter is overflowed, the timer T3169 is started. After this timer expires, the current TBF is released abnormally.
N3105: Maximum value of the N3105 counter. After the downlink TBF is set up successfully, the N3105 is started on the network side. After the downlink RLC data block is added with the RRBP domain on the network side, the valid packet acknowledged message responded by the MS is received in the uplink RLC data block in the RRBP domain. In this case, N3105 is reset. Otherwise, the value of N3105 is increased and the downlink data block of the RRBP is retransmitted. When N3105 is overflowed, T3195 is started. After the timer T3195 expires, the current TBF is released abnormally.
- Change LQC(Link Quality Control Mode) from IR to LA
LQC Detail description:
It is applicable to the radio transmission environment to improve the link quality. Link adaptation (LA) indicates adjusting the coding mode of the channel dynamically according to the transmission quality of the link. The link transmission quality is measured by the 8PSK MEAN BEP and 8PSK CV BEP in the Packet EGPRS Downlink Ack/Nack message sent by the MS. The network side determines the coding mode for data transmission according to the radio measurement report sent by the MS. The cell with the good transmission quality on the air interface is set to the LA mode. Increment redundancy (IR) mode requires the network side retransmit the data block with different punching codes and the MS store the historical error information. The data block is retransmitted through cooperated error correction function. With the IR mode, the transmission quality on the air interface of the cell can be improved. However, the MS must support this IR mode. The cell with the dissatisfied transmission quality on the air interface is set to the LR mode.
Thanks for read this note,You can share your suggestion how to improve TBF drop rate in GSM Network based on your experiences by add comment.
You might also Need to know:
- GPRS Packet Data Access Success Rate(PDASR) Improvement in Huawei GSM
- Call Drop Rate improvement by Parameter change in 3G UMTS/WCDMA Huawei Network
- Drop Call Rate Optimization tips in GSM and UMTS/WCDMA
- WCDMA CSSR Optimization Tips
- Make sure no Hardware problem especially related TRX module. You need to fix Hardware issue first if you found hardware problem
- Make sure no Interference. You have to do re-tune or change frequency that suspected Frequency Interference to improve TBF drop rate
- Make sure No overshooting Cells. You can adjust Antenna Tilt/Down tilt for overshooting cells to improve TBF drop rate and avoid access traffic in low RX level thus can improve TBF drop call.
- Reduce Dynamic PDCH(MAXPDCHRATE) and add static PDTCH to avoid preemption channel by voice services especially for cells with high Voice traffic.
-Shifting Static PDCH from TRX non BCCH to TRX BCCH and make priority setting by set TRX layering priority which can be set by OPTL value in GTRXDEV object.With this strategy data services will be concentrated in TRX BCCH with full power(no power control) thus can improve TBF drop rate and getting better than data services in TRX non BCCH.
- Increase timer T3168 and T3192
T3168 is used to set the maximum duration for the MS to wait for the uplink assignment message. After the MS originates the uplink TBF setup request by sending the packet resource request or the channel request in the packet uplink acknowledge message, the timer T3168 is started to wait for the packet uplink assignment message on the network side. If the MS receives the packet uplink assignment message before T3168 expires, T3168 is reset. Otherwise, the MS originates the packet access request for four times. Then the MS regards this as the TBF setup failure.
T3192: Duration of releasing the TBF after the MS receives the last data block. When the MS receives the RLC data block containing the flag identifying the last data block and confirms that all the RLC data blocks in the TBF are received, the MS sends the packet downlink acknowledge message containing the last flag acknowledgement and the timer T3192 is started. If the timer T3192 expires, the MS releases the TBF related resources and starts monitoring the paging channel. During TBF releasing, if the MS is the half duplex mode and receives the packet uplink assignment, the MS responds this command. During TBF releasing, if the MS is the half duplex mode and receives no packet uplink assignment message, the MS enters the packet idle mode. If the MS is in the dual transmission mode, the MS enters the special mode.
- Increase timer N3101,Ex: from 30 to 90
Detail description of N3101:
Maximum value of the N3101 counter. In the dynamic uplink allocation mode, the network side enables multiple MSs to share the same uplink channel through the USF value in the downlink data block. After the network side allocates the USF to the uplink TBF (the uplink TBF is set up successfully), N3101 is started. The network side waits for the RLC uplink data block sent by the MS. If the RLC uplink data block sent by the MS is valid, N3101 is reset. Otherwise, the value of N3101 is increased on the network side. When this counter is overflowed, the current uplink TBF is released abnormally.
- Increase timer N3103 and N3105
Detail description of N3103 and N3105
N3103: Maximum value of the N3101 counter. When the uplink transmission ends, if the network side receives the last RLC data block, the network side sends an FAI=1 uplink packet acknowledged/unacknowledged message and starts N3103. If the packet control acknowledgement message is not received in the specified time, N3103 is increased on the network side and the uplink packet acknowledged/unacknowledged message is retransmitted. When this counter is overflowed, the timer T3169 is started. After this timer expires, the current TBF is released abnormally.
N3105: Maximum value of the N3105 counter. After the downlink TBF is set up successfully, the N3105 is started on the network side. After the downlink RLC data block is added with the RRBP domain on the network side, the valid packet acknowledged message responded by the MS is received in the uplink RLC data block in the RRBP domain. In this case, N3105 is reset. Otherwise, the value of N3105 is increased and the downlink data block of the RRBP is retransmitted. When N3105 is overflowed, T3195 is started. After the timer T3195 expires, the current TBF is released abnormally.
- Change LQC(Link Quality Control Mode) from IR to LA
LQC Detail description:
It is applicable to the radio transmission environment to improve the link quality. Link adaptation (LA) indicates adjusting the coding mode of the channel dynamically according to the transmission quality of the link. The link transmission quality is measured by the 8PSK MEAN BEP and 8PSK CV BEP in the Packet EGPRS Downlink Ack/Nack message sent by the MS. The network side determines the coding mode for data transmission according to the radio measurement report sent by the MS. The cell with the good transmission quality on the air interface is set to the LA mode. Increment redundancy (IR) mode requires the network side retransmit the data block with different punching codes and the MS store the historical error information. The data block is retransmitted through cooperated error correction function. With the IR mode, the transmission quality on the air interface of the cell can be improved. However, the MS must support this IR mode. The cell with the dissatisfied transmission quality on the air interface is set to the LR mode.
Thanks for read this note,You can share your suggestion how to improve TBF drop rate in GSM Network based on your experiences by add comment.
You might also Need to know:
- GPRS Packet Data Access Success Rate(PDASR) Improvement in Huawei GSM
- Call Drop Rate improvement by Parameter change in 3G UMTS/WCDMA Huawei Network
- Drop Call Rate Optimization tips in GSM and UMTS/WCDMA
- WCDMA CSSR Optimization Tips
pls
ReplyDelete